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I. INTRODUCTION

A. Motivation

Existing ndels of imploding wire or puff gas plasmas '2 leave a

number of physical processes unexplored or only partially examined in their

assessment of diode imploded plasmas as radiation sources. The one-dimension-

al implosion code to be described here is an attempt to increase the physical

relevance of such models.and to enhance the versatility and robustness of the

numerical schemes used to implement them.

Among the relatively unexplored physics questions, one finds those

of photon/plasma energy exchange, plasma thermoelectric radial stresses and

the effect of separately evolved ion and electron temperatures on opacity

calculations. The incompletely examined physics involves: the processes of

current penetration into the plasma load, the correlations of diode waveforms

and plasma motions (generated by reflected power in the diode cavity), the

energy partition between thermal motion and ionization potential, and the role

of marginally stable drift-speed limitations in determing the implosion dynamics.

These considerations can be organized into several concrete goals for the

calculation.

1) Find how important are the details of photon/plasma energy

exchange in structuring the implosion trajectory and (spatially

resolved) energetics. The transitions in qualitative characteris-

tics (ranging from refrigerative collapse to strong reflection)

noted in the core-corona model 3 were quite sensitive to the opacity

calculation. In a full 1-0 implosion calculation the resolution

of the enhanced "thermal conduction" due to direct photon/plasma

energy exchange will provide a more accurate picture of the plasma

emission profil.

I



2) Determine the role of separate ion and electron temperatures

in establishing this emission profile and in governing the plasma

dynamics. As compared with a single-temperature picture, one

expects the proper two-temperature treatment to alter the pressure

gradients-in low density regions and change the opacity in higher

density regions, perhaps altering the spectral mix of line and

continuum radiation.

3) Examine the effect of the chemical potential (properly included

in the plasma energy balance as a function of electron energy and

ion density) on the implosion energetics and the emission profile.4

An accurate partition of incoming energy will probably provide lower

(more physical) temperatures at peak implosion than earlier models.

4) Develop an accurate picture of the current penetration mechan-

isms. Diffusive transport of E (r, t) (or Be ) is dominant to a firstz
approximation, but overall implosion performance is sensitive to the

effective skin depth.5 The role of the free wave field components

in setting this skin depth has not been examined, and the rate of

inward propagation for the drift-speed limitations in J may be

affected by these components.

5) Resolve the sources of reflected power within the plasma load

and relate them to the available measured waveforms from experiment.

An electromagnetic calculation of all fields within the plane parallel

diode opens one more channel of diagnostic information, and may

provide a means of inferring plasma motion from measured waveforms.

It will also provide i more acr irate statement of energy conservation

because the energy con+- neo in the net free wave component will be

included.

2 :
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6) Examine the effect of radial ambipolar electric fields, and the

resulting stress, on the implosion dynamics, particularly in the low

density regions where drift speed limits are expected. The radial

electric fields arise from thermoelectric effects and axial drifts

of charge-carriers. Large temperature gradients, allowed by weak

cross field thermal conduction and enhanced ohmic heating in the

corona plasma, may provide a significant radial electric field and

resulting inward stress on the plasma.

Once these physical questions are addressed coherently, a smooth

upgrading in the sophistication of the radiation emission and transport

model becomes a fruitful exercise. With the radiative, hydrodynamic, and

electrodynamic models structured from first principles there are no "free

knobs" and the subsequent benchmarks with an appropriately configured

experiment, if successful, provide a firm basis for similar theory in more

difficult and perhaps more practical diode configurations.

Apart from these physical questions are various topics arising in

the numerical implementation of whatever implosion model is selected. First

is the choice of grid; a typical simulation will show the model plasma

compressed several orders of magnitude during the course of a calculation.

A strict Eulerian fluid calculation can thus lose its spatial resolution

at the final collapse, when this resolution is most needed. Moreover large

density gradients are conmmonplace, and it is probable that the dynamics of the

low density reqion is dominated by the balance of density gradients and

magnetostrictive stresses. A Lagrangian description is thus preferable in

an implosion/explosion calculation, so long as the external stresses on the

system can be defined readily over the spatial domain of interest. On the

other hand the fundamental field (E ) generating the implosion is defined
z

3
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in the fixed laboratory frame and is most naturally discretized on an Eulerian

msh. The electromagnetic problem therefore requires an interpolation capa-

bility which can map external stresses onto a convecting fluid and extract

field sources from this moving fluid. The natural compromise adopted here

is a completely Lagrangian fluid model convecting through a laboratory-

frame (Eulerian) electromagnetic grid. The electromagnetic grid can be

made sufficiently non-uniform to concentrate the E information density near

the axis while the smoothly distorted Lagrangian fluid grid is a natural

choice for an accurate resolution of density gradients.

A second concern Is the choice of E or B(J ) as the fundamental electro-

dynamic variable. In our view the proper selection is E because it is the

natural field from which to establish drift-speed limitations on the current

density. This consideration plays a fundamental role in both the development

of the Hertz vector formalism and in the choice of the diffusive limit

discussed below (III.A.). Using Be and J ._. (7 x Be)z in a drift speed

limitation algorithm has two disadvantages. The current is derived from a

potentially noisy differentiation process. The limit J "ene Cs does not

imply a completely local value for Ez because the conductivity depends on

a., and hence on Jz at other grid points. It is clearly possible to remove

the second problem by iteration, but the physical process providing the drift

speed limit is a local (fine scale) one. By proceeding first from the local

values of Ez , then iteratively establishing small corrections to the (possibly

limited) Jz from non-local considerations, one achieves a more natural and

probably less noisy convergence to the limit.

A third point is the selection of forward time integration methods.

A common preference for conservatively advanced explicit integrators must

be examined carefully in the context of this radiatively coupled problem.

"&.
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As the level of sophistication in the radiative transfer physics is

increased a considerable expense is incurred for each fluid time deriva-

tive. This expense will scale linearly with the number of frequency domains

and quadratically with the spatial resolution. In order to optimize the

complete algorithm- it is therefore necessary to make the best possible use

of every time derivative available from the space-time mesh. Moreover, as

distinct from calculations dominated by processes internal to the fluid, the

problem of simulating an electromagnetically driven implosion requires a

self-consistent time evolution of both field and fluid. This class of

problems is more likely to be handled efficiently and accurately by an

implicit method, or at least by a predictor/corrector scheme. This choice

has only the disadvantage of being more cumbersome to implement, and, as

described below, the methods chosen make a smooth transition from "nearly

explicit" to "fully implicit." As dictated by the performance characteris-

tics of the complete algorithm, the user will be able to optimize the

accuracy and cost tradeoff by several means.

A final consideration is the accuracy of spatial differentiation

within either the hydrodynamic or electrodynamic algorithms. If these

algorithms can make good use of non-uniform meshes in space and time, then

one can sustain useful accuracy with fewer points. The common differentiation

methods based on finite differences are quite accurate when a dense mesh is

admissible, but if one wishes to keep down the cost of radiative transfer

calculations a higher order, smoother scheme is preferable. Some useful

alternatives are discussed in Chapter II.

-IT~
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B. Computational Aporoach

The specific physical content of the model has been described

elsewhere.6'7'8 The task of implementation can be readily broken down into

the three problem areas treated below - electromagnetics, hydrodynamics,

and radiative transfer. The requirements for each problem area and a

summary of the algorithms employed are given.

The electrodynamic problem statement is simple: given voltage wave-

forms at the periphery of the diode, establish the E and B fields on the

interior spatial domain for the duration of the implosion process. By

driving the diode E/M model at one radius with a voltage waveform, the current

drawn by the load and the voltage waveforms at any interior point are avail-

able as predicted observables/diagnostics of the code and the experiment.

Conventional approaches replace the vacuum portion of the diode with a

circuit relation derived from Faraday's law, but a complete electromagnetic

calculation provides more information. If this later goal is chosen then the

issue of efficient and effective calculation becomes an important question.

With the implosion model discussed here the choice has been to admit either -;

option, viz. the full electromagnetic computation or the electrodiffusive

limit and circuit equation.

For the first option, it is instructive and in many ways practical

to utilize the generalized Hertz vector potential. First, this new potential

reduces the electrodynamics to.a single component of a single vector wave

equation. This reduction simplifies the calculation by placing no self-

consistency constraints on the time evolution of the fields Ez , Be. The

required self-consistency is automatic when Ez , 1 8 are derived from a

single potential Z . Second, the coupling term between field and plasma

is properly defined to all orders in the radial fluid convection velocity

6
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B Vfuid/C, and smoothly admits marginally stable drift-speed limited

conduction and (quasi-static) thermo-electric contributions. Properly, as

fast time scale phenomena which track the instantaneous state of the system,

these effects should be calculated from a single time slice of information.

Without the Hertz vector formulation, an electromagnetic calculation evolving

E z Be separately can only accomplish this to the extent that it satisfies

the temporal self-consistency constraint mentioned above. Third, the coupling

term is a spatial convolution with a fixed Green's function. The spatial

averaging will generally serve to lower the noise level of the calculation

by damping any chatter that may appear on the discrete source array extracted

from the plasma representation. Fourth, while the use of Z does require the

extraction of high order spatial derivatives from discrete data, the accuracy

of such spatial differencing can be Imroved by the use of so-called smooth

9
interpolators. The estimation of local E fields from the parent Hertz

vector by mean, of these splines is routinely accurate to E10, even between

the input data points.

The Hertz-vector-based electromagnetic calculation proceeds from a

spatially discrete set of information {Z, a-Z, J, a J, a J}, given at a single

time. The first two elements of this set are defined at fixed radial points;

the last three, established (sequentially) on a convecting (Lagrangian) grid of

plasma cell centers. The local values of E, 8 at any such time level are deter-

mined by (Z, 3 Z, J) and partially determine the plasma stress and heating rates.

From the values of a.J, J, a spatial convolution produces the Hertz vector

source terms. These source terms are interpolated for use in an explicit

wave quadrature formula which advances the Hertz vector and its partial time

derivative in order to establish Z, aZ at any subcycle time step (used in

the thermal conduction scheme) or at the next major time level.

7



The second electrodynamic option is that of E-field diffusion, which

derives from the Hertz potential wave equation in the limit that incoming and

outgoing waves are in detailed balance. This limit is approximate but

reasonably accurate. It neglects the net displacement current, making any

detailed outgoing wave calculation impossible because no wave source is

extracted from the plasma. Reflected power is manifested solely as a

diminished voltage on the plasma load and the energy delivered is simply

ftdt (IplasmaV gen). Here only the plasma current waveform is available as

diagnostic information, insofar as the voltage at the convecting plasma

vacuum interface is not usually available from experiment. The major simpli-

fication is that Z need not be explicitly employed; it is sufficient to

diffuse the E field and calculate the B field in a Cself-consistent) quasi-zeI
static manner. Diffusion of E rather than Be is preferable because the

criteria for drift speed limitation stem most directly from the application of

an "E-field-to-local-J" mapping.

Diffusion based electrodynamics proceeds concurrently with subcycled

thermal conduction. A circuit relation sets the time varying value of E at

the outer boundary of the plasma, and the time slice information Eth, E', B,

, Aa, o} defined on the (convecting) plasma cell centers determines the

material derivative of Ez. Here E' a E + ir x BB is the field in the

convecting frame; Eth is the axial thermoelectric field. The new field E

at the next time level is determined implicitly by the time secuence of

material derivatives. The plasma mesh evolves in response to the stresses

partially determined by the local values of E, B. In this mode of operation

some iteration is required in obtaining both DE /Dt and BB in contrast to

the electromagnetic calculation. There only the quasi-static portion of Be

requires iterative refinement due to the magnetic field dependence of the

plasma conductivity.

8



In either electromagnetic or diffusive mode the imposition of drift-

speed limited conduction is straightforward here because the E (r,t) profile
z

is established a priori, before J is estimated. The rational basis for

preference between these two can be derived only when the goals of I.A.(4)

above are reached and when the comparative computation costs of well tuned

subroutines are established.

The hydrodynamic problem is readily formulated (once E, 8 are con- -

sidered given) in terms of well-known techniques. The primary challenge is

to produce a quiet, relatively robust algorithm capable of concentrating the

computational effort on the faster time scales of the problem, minimizing the

number of expensive derivative evaluations required, and retaining spatial

resolution of very highly compressed plasma loads.

In view of these requirements a Lagrangian formulation of the two-

fluid transport equations for number density, flow velocity, and temperature

has been implemented. There are several simplifications to the complete set

of transport equations which are appropriate to the imploding diode plasma,

but the hydrodynamic model is essentially that of Braginskii. In particu-

lar the radial flow field is assumed to be identical for ions and electrons,

the electron density is assumed to be in quasineutral equilibrium with the ion

density (apart from small ambipolar charge separations), and the system of

moment equations is closed with an ideal gas equation of state for each

fluid. This reduces the fluid variables to fn1 , Vr, Tit Te,  e However

T is not a very good thermodynamic variable because it is tightly coupled

to , the effective ionization state and to e,, the specific chemical

potential. In order to follow the ionization dynamics efficiently, let

2 '1e a T + 3T and evolve e instead. The approximation of the collisionale e e
10 _

radiative equilibrium (CRE) model is to assume a very rapid establishment

9



of ,and e, from (given) nj and Te. Hence the usual heating sources and

sinks for T e , when is fixed, become (in effect) heating sources and sinks

for e in the context of CRE ionization dynamics. From a sufficiently accurate

representation, preprocessed by the complete CRE model and smoothly inter-

polated, one may simply advance ee Cthe "grand canonical temperature") and

compute Te, e , EI and all other transport coefficients from the e-value

obtained at any timestep. This later method is presently implemented. As is

N. common practice in Lagranglan calculations, one may also remove the ion

density from the set of evolved quantities by-conserving the total number of

ions in any cell, unless a rezontng is done, and calculating the density nIn
from the time varying cell volume. Hence the irreducible set of fluid vari-

ables to be evolved is {Vr , Ti, e}, with the r S ftdtIVr(t1) defining the

variable mesh positions to be used in computing the density n1. For the

choice of diffusive electrodynamics, this set is expanded to {Ez , Vr, TI ee

and the separate evolution of {Z, at Z} through the Hertz vector wave equation

is discarded.

The complete set of magnetoplasma, i-dependent transport coefficients

is available in a single subroutine, and those required for the simplest

relevant problem are the axial electrical conductivity, the radial ion and

electron thermal conductivities and the radial thermoelectric coefficient.

*The expansion of the model to include radial ambipolar electric fields,

viscous stresses and viscous heating only requires activation of the axial

friction coefficient and five viscosity coefficients. Moreover, because the

relaxation time is the cornerstone of the transport calculation an extension

into more strongly coupled plasma domains is quite straightforward on a

cell-by-cell basis. The use of a modified relaxation time based on the local

Coulomb logarithm is a useful first approximation in strongly coupled plasma

10
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transport and can be relevant here in some simulations of wire or foil

annular implosions.

The hydrodynamic calculation across a major time step proceeds

from the time slice {N, Vr, TI , ee}. Here N1 (the time invariant total

number of cell ions), TI and 6e are defined at the cell centers, while Vr

and r(t) are defined at the cell interfaces. From this basic data the model

calculates Te 9 SI all transport coefficients, all heating rates and all

fluid stress terms (after E and B have been established). The major time

step is selected from a competition among the magnetosonic Courant condition,

fractional cell area changes, local truncation error in estimating future

accelerations (DVr/Dt), and the most rapidly varying electromagnetic source 41-

terms. Once the major time step is set,a time window is defined over which

thermal conduction, compressional heating, radiative heating or cooling, and

ion-electron exchange heating are subcycled at the cell centers (under an

assumed cell boundary evolution). This subcycle is implemented using an

(implicit) variable order Adams predictor-corrector or Gear method. At the

completion of the subcycle the explicit flow field advance (and implied cell

boundary motion) is either retained or iteratively refined Cbecoming the

starting point for an implicit method). If desired the iteration proceeds

until self-consistency is achieved. The self-consistency criterion is solution

of the first order (non-linear) difference equation for the fluid accelera-

tion, to a specified tolerance at all mesh points. For the diffusion based -

electrodynamics the subcycle includes the E field evolution as well.

A central element in the hydrodynamic model is the question of

radiation transport. The algorithm presently implemented is a compromise

between the full CRE calculation and the much simplified local approxima-

tion 12 of the SPLAT code. First, the emission function preprocessed by the

11

............................



CRE model is represented over the relevant density and temperature domain.

One such emission curve is required for each radiation category one wishes to

calculate. A simple set is: (lines hv < 1 keV, lines hv > 1 keV, free-

bound continuum, & Bremsstrahlung}. Next,for each radiation category a

damping coefficient is computed for each cell. These damping coefficients

are path integrated along a selected ray to produce a probability of escape

for that photon category. From the escape probability field a matrix of

coupling coefficients is derived. Once the coupling matrix is given,

selected inner products with the vector of cell emissions for a particular

category produce the cell-to-cell photon exchange and the net radiative loss

to the plasma from any zone in each radiation category.

This formulation has the advantages of being easily expanded into a

multiple group algorithm and easily modified to include other elements. At

present A1 and Ar are available, although the representation of ee is not

yet available for Ar. The disadvantages lie in the added calculation of the

coupling matrix and in the need to establish a fresh matrix for each radiation

categor. It is hoped that the use of implicit methods for the overall hydro-

dynamic advance will offset the cost of these radiative loss calculations by

requiring fewer time derivative evaluations to achieve useful accuracy.

12
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II. ACCURATE METHODS FOR NUMERICAL DIFFERENTIATION

A. Survey of the Theory of Smooth Interoolants

All interpolation methods are based on some criterion of distance

between functions. The free parameters of the interpolation scheme are to be
chosen in such a way as to minimize the "distance" between the data function

F(x).and the interpolant z(x). Smooth interpolants are derived by inventing

a distance criterion which measures the oscillation in a function as well as

its mean value. The sequence of distance measures (or norms)

E)(fb dxIFx) °z(x)12)

I Bn dx wn) n(x) Z(n)(x ) 2 (11.1)

'~ {~ ~ d 'v ( n) (x) - (n) (x)12) 1

represents a progressively more general set of functional similarity criteria.
( th(Here the superscript in parentheses indicates the n derivative.) Conven-

tional interpolation schemes stem from E (Hilbert's normi while smooth inter-

polants arise in c6nnection with ? (Talmi-Gilat norm) or 1' to be discussed

here. The B, n(x) are rather freely chosen, subject only to the constraint

of convergence.

Each of these norms can be represented also as an inner product

operation Involving smoothness functionals, i.e.,

Iw (g, h) Bnfbdx W(X)gn)(x) hn)(x), (11.2)
nO a

so that, e.g., T2 Iw (F-z, F-z). It is these smoothness functionals that

provide the concrete algorithms to be used for Interpolation. In particular,

13
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choose a setg,(x) of complete functions (linearly independent and

orthonormal over the interval [a, b ]). Any interpolant z(x) can be

expanded in terms of this set, and the expansion coefficients are chosen in

such a way as to minimize a smooth norm of z~x) (e.g., Iw(z)) subject to

constraints. The constraints are the known data concerning F(x),

z(xj) - F(xj),z (xk) - Fn(xk) for specified sets j 1 1, 2, 3...J,

k - 1, 2, 3...K, n = 0, 1, 2...N.

This defines an Euler-Lagrange problem which can be transformed

(using the orthonormality of the 9k) into a simple linear system for the

Lagrange multipliers {0,kl. The matrix for this linear system is

determined by evaluating

gt(X) g (Y M?
R (X, Y) E (11.3).-

1~ =0 lw (g1' g ) "

and its partial derivatives at the mesh points, i.e., x [ x} is.

y - {x.}. It is the choice for Bn and w n(x), therefore, which concretely

specifies the interpolation spline R(X,Y). The original work of Talmi and

Gilat9  shows several sets [B } which are useful in that they render R(X,Y)

summable in closed form. A more versatile result is obtained when one
invokes I rather than only I as they did.

W

Instead of searching for a set {Bn } giving a useful R(X,Y), reverse

the process and choose a spline R(X, Y) = R (X-Y) likely to be similar to

the smooth functions expected to support the data. The norm Iw is easily

shown to be so general as to allow the {B } to be extracted from the spline

R (X-Y), rather than the original (reversed) procedure. For example, select

wn(X) a (1 - x2)n, [a,b] C £-l, +1] , and g,(x) P (x) (a Legendre

V,

,,-,
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Polynomial). Then
-p+

I (gZ, gZ) B -- Z B + [ -mlt.

depends only on those m forO < m < Z.. Since any function R(X,Y) can

be expanded on Ea,b] in terms of transformed coordinates U = X-Y, V =X+Y .

one may always adjust the (B I such that the g,(X) g (Y) expansion reproduces
n

the required coefficients for the expansion of R in terms of U alone.

Using R(X,Y) as the fundamental element one may cast the general

spline and its defining linear system in a very simple form,

Z(X0 a(m) R(X,X.)
z~~xa = R j!.

F(m) [ ) 3() I xZxk) kI k IZu x L x

Here the function R(xy) is assumed available in closed form, the F(m)

represent input data giving the data function and its derivatives (through

order a) at any of the x£. The notation convention here is that if any

Fm) is left out, so also is its corresponding ..

In summary, the X X represent the unknown Lagrange multipliers re-

quired to minimize the interpolant with respect to the I norm implied by one'sw

choice for R(x,y), subject to the data constraints embodied in the F m)

The usual application of this involves specifying derivatives only at

the end points, but this is only a matter of choice and one may readily extend

the theory to include integral constraints as well (m < 0).

A compact matrix notation for this algorithm allows one to state

some simple rules for its use as a numerical differentiation scheme. Let

15



W -jW - IF -0

.4.

Wlm  a(n) R(xi xj) -Lxi xj i i.,

S(P) (nRx,x. R~
x xi xj R~I

[(P) aW R(xxj) RP (generally not a square matrix),

and F(m) F, (m)_ Xk with k 1 1, 2, 3... m + Z, .•. J + N.(number of

derivative conditions given). The defining linear system is simply R.)X F,

while the spline at any point x becomes z(x) - X - (X) R(x,y.). Here

the operator 3ay) implies a derivative only for those elements of X

corresponding to derivative constraints of a particular order; for most

elements this derivative will be of order zero, i.e., correspond to a

function value constraint. If one wishes to write the analog of a finite

difference formula estimating the derivatives of a data function F at the

mesh points used in R, then R l is required.

a()F a(P) Z -r1.3X ~jy R

(11.4)

F(P7 R P . R_- F .

Similarly the method provides a Jacobian defining the sensitivity

of a derivative estimate to the data values producing it, i.e.

- R (1I•5)

Derivative estimates off the original data points are given by

the formula

16
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a(p) F R "  . (RI.6)

x x

In comparison with more common interpolation schemes, the "smooth"

interpolators have several advantages. First, the algorithm is clearly

vectorizable, except for the calculation of R" . In a piecewise spline

scheme any evaluation point x (distinct from the x.) must be nested in

its appropriate interval before the interpolation can proceed and this

represents additional (non-vectorizable) calculation overhead. Using

(11.6) to evaluate the interpolant, one need not even put the values x in

any particular order. A further advantage over piecewise splines is a

reduction in storage space for the spline coefficients; a piecewise scheme

requires the storage equivalent of M • (J + N), where M is the order of

the spline. There are also significant increases in accuracy, which will

be discussed below, and the treatment of nonuniform meshes becomes much

less formidable.

B. A Family of Generalized Splines R(x,y)

One of the original splines noted by Talmi and Gilat corresponds

to the choice Bn = Dn/n! in I, and leads to the Gaussian spline .

G(x,y) -I. exp - (x-y)2/4D . (11.7)
(OID)

The parameter 0 plays the role of a correlation width in coupling the data

points across the mesh, and thus controls the condition number of the

resulting matrix R. Qualitatively, as D increases from some small value,

the interpolant Z(x) evolves from a "pickett fence" structure toward a

smoother structure, then further increases in D will require X elements

17



of alternating signs in order to follow the data variations. As D

the R matrix moves toward algorithmic singularity for any inversion method

using finite precision arithmetic. Usually, for positive definite data

exhibiting clear trends, an optimal D will be found (for any particular

mesh) which allows a smooth fit with positive definite values X. In the

case of non-uniform meshes it is useful to let D vary across the mesh

according to the local data point density. The spline becomes

G(x, y-, 0.) - exp - (x-y.)2/4D.

'4..

so that the effective norm now involves the mean value D, a B n Dnn!,"
n

and some weight function Wn(x). One Finds in general that, in order to

construct a globally smooth interpolant on a highly distorted mesh, an

adjustment of D which preserves the number of e-foldings per interval is

advisable. Such an adjustment acts to diminish the variations in the

effective bandwidth of RG. .

". A few numerical examples of this interpolation method with the

Gaussian (or G-spline) are sufficient to convince the user that functions

F(x) with nearly null derivatives (anywhere on the domain) are rather path-

ological cases. This leads quite naturally to the exploration of other

R(x,y) in attempting to accommodate sucn data. A useful set is derived by

integrating the G-spline repeatedly:

E (x, yi, Dj) 1 I + erf (u.)

-,(x, yj, Dj) - 2 1 uj 1 + erf(uj) e -I2--
J J

E 2(x, yj, Oj) Q ID[ + e rf (uj] +~ 2+18

18
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where u. = (x- yj)/2 0; determines the relative coupling of the data

points. The E-splines are the smooth-norm generalizations of the familiar

B-spline elements (x - y)m used in piecewise spline theory. They are of

particular utility in accommodating data which exh-ibit a clean asymptotic

trend or areas of null derivatives. For example in Table I is shown a

(fully optimized in D) test of the E-spline sampling a function

F(x) = A exp (. + C exp x x2

at a progressively larger number of points. The quantity tabulated is the

average fractional error in Z(m) for m=O, 1, 2, 3, 4, over the domain E-1,

+l 1. The interpolant and test function are compared on a mesh much finer than

that used to sample F and to originate the calculation of X values for Z(x).

TABLE I

rel. error in Z(m) averaged over E-1, +11:

Original sample mo 1 2 3 4'

points ofF 2

21 2.06E-3 0.346 0.344 0.58 22.3

31 1.10E-5 4.29E-4 1.16E-3 8.26E-3 3.96E-2

41 4.69E-7 8.92E-5 1.92E-4 6.79E-4 2.30E-3 "1

51 2.53E-7 8.77E-6 6.09E-5 7.16E-4 7.77E-3

61 7.41E-7 7.49E-5 2.59E-4 3.15E-3 8.25E-3

As is evident from these results the E-spline can track accurately

data of quite different functional form. This example is also notable in that

a G-spline would provide a much poorer result - the constants in F(x) had

19
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been adjusted so as to produce a very flat region in the vicinity of

x - 0.2. The degradation in this interpolation for larger numbers of sample

points is a manifestation of accumulated roundoff in the linear system

solution. Moreover, in common with other methods, most of the average error

is coming from the ends of the domain. The accuracy in the interior is often

an order of magnitude better than the mean.

As with any fresh technique there are some points less well under-

stood in connection with these new splines. In particular, one is a robust

algorithm for the choice of D. At present the complete automation of these

splines is not quite satisfactory. Choosing 0 based on the sample density

certainly works roughly but the optimum value is apparently not independent

of the input data F, and more systematic study will be required on this

topic. Also the E-splines tend to overshoot functions which rise and level

off sharply, but this can probably be corrected by adding an offset in the

argument u , i.e. u a (x - y + a j)/2 u.

The experience thus far has been very positive with respect to

"interactive" fits (i.e. where the user chooses the a. and D. rather than

automating their choice), and in the case of extracting the electric field,

E, from a Hertz potential on a fixed but non-uniform radial mesh. Specific

examples are discussed in Section D.

C. The Interactive Interoolation Package (VAX Implementation)

The present vehicle for preprocessing CRE emission or equation-of-

state data is a pair of command file synonyms: REPRESENT and EVALUATE. The

details of their usage are documented in Appendix I. The REPRESENT algorithm

processes an input file assumed to contain a mesh yj and one to three

functions F. evaluated at the mesh points. The user is prompted for the spline

choice {G-splines, E-splines, or E2 splinesl and the width parameter D(or "
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if the given mesh is found to be non-uniform). The appropriate R matrix

is calculated for the mesh given and an IMSL linear system solver CLEQT2F)

is used to calculate a X. vector for each function F. input. The output
i .

consists of two files by the same root name (user supplied). The first is

suffixed "H" and is- a header file providing default and dimension informa-

tion to the companion process EVALUATE. The second is an interpolation file

containing a copy of the original mesh yi, the 0 required and the resulting

A. for each of the functions F input.

In the present configuration REPRESENT allows the user to specify

boundary derivatives of first and/or second order at either limit of the y

domain. The boundary condition descriptors are stored in a 2 x*2 array, the

boundary derivative matrix (BOM), and embedded in the header file. The overall

accuracy of the linear system solution is controlled by a specified number

of digits of precision in the input file (IDGT) and the number of iterative

refinements allowed to the IMSL solver (ITMAX). If invoked , the iterative

refinement proceeds until the solution can be converged to IDGT precision.

Usually iterative refinement is not needed and, for the G-spline, often

appears to be unstable as well.

The companion process EVALUATE produces a file of interpolant

values and derivatives through some specified order (< 4),for any of the
A vectors contained in an output file from REPRESENT. The evaluation domain ..

can be any subset of the original mesh (Y1 < y < Y3 ) or can even line outside

it. EVALUATE also allows the user to change the spline type if desired.
-4

For example A calculated with a G-spline can be evaluated with an E-spline

to estimate the (definite) integral of the original data over any subinterval.
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D. Applications of Interest in Modeling Diode Imoloded Plasmas

(i) Estimating an Ez field

The primary problem in using the Hertz potentia' is the require-

ment that higher order derivatives be extracted from the discrete, time-

dependent potential Z(ri,t). As a test of the smooth interpolator's ability

to resolve these fields, a model Hertz potential

-44

X
Fz(X) j(0 + C)x 4-f d U e

z 
-f0

ao 
.o

where x = - , was chosen as a data function. This is the Hertz potential
1bh

for the E field

E(r,t) - (t) {l + - exp-(r /b),

exhibiting a sharp rise in the vicinity of r-b . In a similar manner to

the test described in Table I above, the function F (x) was sampled at 41
z

points on a uniform x mesh (hence a mesh in r which is denser near the

origin). The interpolation was carried out using the E2 spline, and the

interpolant and its derivatives were compared to those of the original,

analytically given test function on a mesh much finer than the interpolation

grid. The results are shown in Table II as an average relative error and
i.7

a typical interior relative error for the interpolant z(x) and its first

four derivatives.

TABLE II

Z(m) maO 1 2 3 4

mean error 1.36E-5 l.OOE-5 5.21E-5 1.OE-3 0.239

interior error 2.47E-6 3.25E-7 2.73E-6 7.56E-6 1.03E-4
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Again most of the average error occurs near the end points. The test

function is well matched even between the sample points (where one's

Lagrangian fluid grid will almost always be located).

The good fit to the potential holds as well in estimates of

E(x) and S E, even though

E ---. aj+ x a'Z}and
a0x

a 4a xx4  x  x ...

40x

involve linear combinations of the derivatives of Z. Typical interior

errors for E are 3E-6 and for axE , IE-6. The E spline has routinely

extracted these E-fields in many such tests, though the spline function by

itself only roughly resembles the test function.

(ii) Representation of thermodynamic data

In order to avoid advancing both Te (electron temperature) and

el (specific chemical potential) concurrently in time, the use of a

collisional radiative picture will hold these quantities in quasi-equilibrium.

The calculation of this quasi-equilibrium self-consistently with the plasma

evolution is a very expensive process; it is therefore useful to fit a

paradigm calculation of e and 3 Cthe mean charge state) and use this as an

approximate representation of the underlying atomic physics.

The fundamental variable used is a "grand canonical temperature,"

e S Te + / It can be most easily represented by defining a branching

ratio b a e /T and examining b(n1,S ). Owing to the large domain of 9e e e e
values relevant to the model, the optimal data to fit are Zn b and Zn e.

23



In Figures 1 and 2 respectively are plotted the interpolants to Zn b vs.

Se 8e (for nI I010 and the fits to LICTe) and j(Te) with ee shown for

comparison (again at nI - 1019). The plots are very true to the original dita

(5-6 significant figures) and were generated by splines of the form

tn b(e nj) - b (nl) I G(,e 6 e Z ej, Oj) (II.ga)

€I .j eJ#3 J A X(n) I E(Zn T e Zn Tj 0) ~ (II.9b)

CI 3n Xe (nCI) E(Ln T e~ n Ti. 0) (II.9c)

with a sampling of 31 data points. The choice of G-splines or E-splines is

guided by the general form of the data. The branching ratio b is a cleanly

peaked function, so a G-spline is the natural choice. The ionization state

and chemical potential curves exhibit fla' iortions (in between the opening

of atomic shells) so the E-splines are indicated.
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III. THE HERTZ DRIVEN IMPLODING PLASMA RADIATOR (PROGRAM ZDIPR)

A. Overview

A computer program is being constructed to solve the one-dimensional

dependent degree of ionization) and an electromagnetic driving field in a cy-

lindrical cavity. It was shown previously that the number of equations describ-

ing the fields can be reduced and the computational stability probably improved

by the use of a generalized Hertz vector, Z, from which E and B field vectors

can be derived by differentiations. In the limit of high plasma density the

wavelike term in the field equations can be neglected; this corresponds to

a field-diffusion approximation. In simple cases- constant scalar con-

ductivity for example -this gives the usual magnetic diffusion equatiun.

The program must couple field or Hertz potential quantities,

evaluated most conveniently on a stationary (Eulerian) grid of points, with

fluid equations describing the mass-motion (Y) electron and ion temperatures

(T , Ii), ionization (?), and effective conductivity (Z) of the plasma, alleI
functions of r and t evaluated most conveniently on a comoving (Lagrangian)

grid. The differential equations are integrated forward in time by a 1
variable-timestep method (GEAR), but because the plasma thermodynamic state J

evolves much more rapidly than the fields do, it is updated separately, on a

fast timescale, with the subcycle timesteps shorter than the major timestep T

required for integration of the field and momentum equations. Doing these

updates on different timescales is expected to save a significant amount of

running time and expense in the computation, and may make the difference

between a practical cost and an impractically large one.

In the code description that follows,the subroutines that update

the plasma state on the Lagrangian "r" mesh are called MESHSTRESS
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(forces),TDOT (heating), CREOS (ionization state) and FLUIDOTS (material

derivatives), all of these being used by the subroutine GEARBOX which

controls the updating as part of the overall fluid-advance routine HYDROPUSH. -

The subroutine that updates the field or Hertz potential variables

on the Eulerian "R" mesh is called ZPUSH. When the Hertz potential represent-

ation is used, the subroutine HERTZDOTS updates the source terms in the

potential equation at each major timestep. When the electric field diffusion

representation is used, the corresponding subroutine EDOT updates the field

source 5 J and alternate plasma state movers (GEARBOX * TETGEAR; FLUIDOTS *

TETOOTS) are used because different electromagnetic information is required.

This code, called ZDIPR, is now mostly written and some of its

portions have been separately checked. Further testing and integration

of the various subroutines will be carried on in the coming weeks.

.2
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B. Theoretical Summary

The electromagnetic calculations required are either solutions of

the Hertz wave equation or of the electrodiffusive equation derived from

it. If a complete calculation is desired, all fields and currents are derived

from solutions to

a " u' a (u z J . (Z) .l)

-2 -2where T ct/Ro, u- R/Ro , Z roa/c, J rE, E E z/Qo R 2  Be/Qro2
-1E - -u Na(u Z)and Z a Z (r,t)/Q define the dimensionless variables and

fields; If one gives up some information concerning the details of the

diode fields and makes the assumption that the incoming and outgoing wave

components arein.detailed balance, then the wave equation above can be

transformed to a diffusion euation

a U8 E} E a Et Z a E B a a (111.2)

Appendix II.)

The fluid response to the electromagnetic stresses and heating is

embodied in the relations

B V a tn I . . * (111.3)
E r ' m mcn I mn I

and,
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7 -77

T 17- + -.- T + .3
ft e 3- e~v e r e V q .k 2 zn) -

Dt e e v) \2 I (III. 4a)

+, 71n (Jm*E I) + mRad ' I
T3 -T (7.V "  I III. 4b)

2t 3 n1  z 2m(i T)TD_ TI " -4 TI(V+V) n ( _ ) " (XlrrTI) + - Te - T ("4

In these expressions 9e= Te + ' =T + T = mI +

e e 3 1 T1  e-, m +max m

Xei is the thermal conductivity, T the plasma relaxation time, E the

ambipolar radial field (with p its induced charge density), and Qrad is the

net (local) radiative heating or cooling. The dimensional version of fields

are subscripted with a vector component; dimensionless fields are not. The

radial electric field is established as a solution to an integral equation

derived from the radial component of Ohm's law, (cf. reference 6). The

drift-speed-limited current condition is supplemented by a (nonlinear)

change in Z where the local E field requires it. The overall architecture

of the model is Indicated in the flow chart of Fiqure 3, and some detailed

documentation of the physical content has been mentioned above (Chapter I).

The following sections describe in some detail all the specific

algorithms which are required to implement (111.1-4). For the sake of

simplicity, a common notation for all of them is given here.

The (nonuniform) time levels for any variable are indexed with a

leading superscript; the Lagrangian fluid mesh is denoted by r and it-

material derivatives, by a superscripted dot (or dots). Spatial indexing is

denoted by a trailing subscript and various cell-to-cell averaging operations

are denoted by an overbar or by angle brackets.
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Since the code performs a subcycle calculation wherein the time

step is set by the IMSL Gear integrator, these intermediate time levels are

denoted by a leading superscript asterisk. The subcycle interval is denoted

by T, and its end points by Tlo and Thi. Other spatial grids are employed

in addition to r.. -The Eulerian electromagnetic grid is denoted by Rk, and

the (Lagrangian) area coordinate a=r 2 or (Eulerian) coordinate u".=VZ(R/Ro )2

will be used also. The evaluation of any quantity at the Lagrangian cell

center will be denoted by a leading subscript "c". For example,*fj denotes a

comoving acceleration on the boundary of the jth cell evaluated at some

arbitrary point in the subcycle: Tlo < "* < Tlo + T=Thi; and .Zk denotes
th .

the first (partial) T - derivative of the Hertz potential at the i major
time level and the kth grid point of the R mesh. On the other hand, *E.

C ]

denotes the first material derivative of Ez at the jth cell center at some

time T* in the subcycle. In general the fixed mesh (R or u or u) will be

indexed spatially by k; the comoving mesh (ror a), by j. Exceptions will

be noted.

C. Electromagnetic Alcorithms and Subroutines

Either the electromagnetic mode or the electrodiffusive mode

requires the establishment of a local E field on the plasma mesh continuously

through the subcycle. The electrodiffusive mode is discussed in Section

III.G(iv) below; only the electromagnetic calculation requires distinct

subroutines and is discussed here.

The intermediate time T* chosen by the subcycle integrator is the

fundamental parameter controlling the Hertz potential wave equation integrator

ZPUSH. The input data to ZPUSH are, in addition to '*, the previous Hertz

potential (with its partial 7 derivative) at the last major time level and
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the source terms arising on the Lagrangian plasma mesh, i.e. {Zk zTki i2'
'.a ., a .a.J-1. The output of ZPUSH is simply *Zk, *aZk, from which one

may derive the required local fields in the fluid.

The value of T* determines a radius of integration for the wave

quadrature formulae,7 which generate the time-advanced potential and its

time derivative. The source terms and initial data are functions of radius

only, but the wave equation solution requires them to be mapped onto a regular

array of quadrature points. The quadrature points are arranged within circles

of raoius T* centered at each electromagnetic mesh point Rk. The source terms
IVi.

from the plasma mesh r. are smoothly interpolated to the whole space R using

a G-spline and, when combined with the existing interpolation coefficients for

the initial condition data, one may define six wave quadrature functions,

QFI .... QF6. These are then input to WAVEQUAD, which evaluates them at the

needed quadrature points and forms the inner products that estimate the Poisson

integral solution for the Z wave equation.

Once *Zk, *arZk are output by ZPUSH, the companion routines EFIELD

and BFIELO use these values and *J. to produce *Ej and *8. by means of E2

spline interpolation. Since *J. is only known from *E. and *r. the previous

value for B. is used to estimate *E. first. The quasi-static B. component

is then iterated to convergence, as discussed in Section III.G(ii), and

a self-consistent *E and *8 aie established.

During a subcycle the use of ZPUSH, EFIELD and BFIELD,with a3Ji ,
-c'

lc J held flxed,provides all the field information needed by the hydro-

dynamic portions of the program. These sources are updated however at each

major time level i, i + 1, 1 + 2... using the subroutine HERTZDOTS, the

fluid-to-field interface code. HERTZDOTS references the material derivatives
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* . and Jr and the plasma mesh rcr r in order to compute these sources.cj cJ c' •c.'

The higher order material derivatives in J are calculated using complete

information on the time derivatives of E, Z and the drift speed limitations

toJ.

D. Transport Coefficients -.

The central elements of the field-to-fluid interface are the

transport coefficients, calculated by the subroutine BRAGINSKII. This code

produces values for as many as 20 transport coefficients, as functions of the

ion density (n), electron temperature (T e),ion temperature (TI), an effective

ionization state ( ), and the local megnetic field Be. Input units are CGS,

except for temperatures in [keV].

The coefficients are evaluated at the cell centers and a local

coordinate system: z = 'e/IBe, x - any orthogonal direction, y = z x x is

employed. The z is called the parallel direction; x, the perpendicular; and

y, the cross product. Output [CGS] transport coefficients are written in three

common blocks (PARATRAN, PERPTRAN, CRPXTRAN) which connote these directions,

and in two additional comnon blocks (VISCTRAN, EXCHANGE) which contain viscosity

and electron/ion heat exchange rates. The logical matrix of coefficient

selectors CONTROL (6, 3) in the common block TRANSPORT-CHOICE determines

which coefficients are evaluated, as shown below, in Braginskii's notation.
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TABLE II I

Coefficient (1, 1) (1, 2) (1, 3)

of friction ,, ( , B) c(j• B) aA(3 B)

Thermoelectric (2, 1) (2. 21 (2, 3)

UT T UTcoefficient all (38) u 8)AB

Electron thermal (3, 1) (3, 2) (3, 3)

conduction X11 .) 3 B) 4 , B)

Ion thermal (4, 1) (4, 2) (4, 3)

co du t onX B) x L B) )(A B)

Electrical (5 )(.5, 2) (5, 3)

conductivity a,, (3, B) ( -B) aA(. B)

Viscosity (6, 1) (6, 2) (6, 3)

(ion & electron) no,4 ( B) no 4 (3, B) no 4 (3, B)

If CONTROL (I, J) has the value "true", this triggers the evaluation of the

indicated coefficient at all cell centers of the input mesh. Any true value

in CONTROL (6, 1, 2 or 3) causes evaluation of all viscosity coefficients, -_

and the exchange heating is always evaluated (independent of CONTROL).
13

Since Braginskii's theory provides all these coefficients as

functions of w1T I, weTe and , the evaluation scheme also provides arrays -

in common blocks which show we'e , T l'r, re' Tt and A, the Coulomb logarithm,

at each cell center. Theydependence tabulated by Braginskii has been

parameterized by power laws inI These fits are implemented in the
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companion routines BRALPHA, BRBETA, BRGAMMA, and BROELTA, evaluating

YO ( )}' and {6, (()} respectively. The constant values a', 6',

y," are also returned in the various output arrays. All of these dependent

functions can be represented to reasonably accuracy ("%2%) by expressions of

the form c0 + C, V )' on [1, + in For the purposes of transport

coefficient evaluation is restricted to be greater than I and so also is

the Coulomb logarithm. However the systematic modification of -r and "

allows the extension of the theory and the code into domains of stronger

3coupling (in the plasma parameter nX3). Once the appropriate relaxation

times are available the restriction on the Coulomb logarithm can be relaxed.

The modification of Te due to turbulence in the low density, drift

speed limited regions is also a natural temptation. It represents the

simplest way of obtaining a consistent and systematic transport package for

turbulent loads. At present it has not been done because (U) the model of

turbulent relaxation by a Fokker-Planck kinetic equation is questionable on

many grounds, (.U) the magnetic field effects in turbulent relaxation are

not likely to be accurately represented by Braginskii's functions, and

(ZLL) the proper treatment of turbulent transport will depend on isolating

the detailed properties of those microinstabilities peculiar to the cylindri-

cal, hlghly-inhomogeneous plasma. Those properties, which can be calculated
only when the background quasi-equilibria are available, depend on the

results of the present model and cannot be specified a priori. The marginal-

stability criterionJ < ene cs circumvents these difficulties and is thus

used in place of Te modifications.
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E. Fluid Density and Flow Field Time Derivatives

The data base for all the hydrodynamic calculations is the common

block FLUID-STATE, containing {NJ T i j r i An update ofc l,j' c'e,j r nudt f

the FLUID-STATE is the central result of a major time step. The relation-

ships among the basic fluid variables on the Lagrangian mesh are illustrated

in Figure 4. The simple two and three point area-weighted differencing

schemes for such a mesh are discussed in Appendix III. The cell ions

{N.} are a conserved vector of ions/cm resident in the (compressible) cell

assuring strict particle conservation and a solution of the

equation of continuity limited in accuracy only by the evolved values of

}. Theelements of {N.} are assigned soatial locations given by the cell

center position (defined by the equal area point) crj /V 2 + r,+,).

They change only if a regridding is called for.

Boundary Variables: Centered Variables: N.
(, i. . I t. jt, i(t) l WT,, 6J All

E a Transport
9 Z Gi'iCof.

rr

jI aa 2

rI 1 r Ii+1 r0" eaI a +  h< h> hj' L--

0 CaJ Mesh al+1

Spacing
Notation

Figure 4. The Lagrangian Fluid Mesh
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I

When needed, the stresses at the cell interfaces are calculated by

the subroutine MESHTRESS. This code has two modes of operation. In the

usual mode, during a subcycle,the acceleration of the interface *Fij is

computed. But at a major time step, the initiation of the subcycle and the

calculation of the Z field sources requires an explicit calculation of the

jerk as well. The fluid stress has three major components as noted in Eq.
j

(111.3) above. Each of these stress components: pressure gradient, magneto-

strictiye, and amnbipolar electrostatic, has a particular realization in

terms of area weighted finite differences (or smooth interpolants if more

precision is needed) that is best suited to the mathematical and programming

requirements of the problem.

First, the pressure gradient stresses are most naturally derived

from the mesh structure shown in Figure 4. Using the (N.} and {ia.} the

mean fluid density at the cell center cn N - a.)ir is the quantity

determining the local inertia of the fluid. The pressure gradient stress

2
is thus easily shown to be estimated (to O(ar )) by

r~~t n n n1 1 (1.)-j

-(2 r /~M) cj C
caj caj-1

where the area-weighted interface temperature T. is defined by (cf.

Appendix III also):
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ir - r - -- - -. -

a l a c j - a a c (111.6)

for j on the index domain [2, J] with J the maximum number of cells. If

one insists, as in Section Il.G, on a null heat flow across the outermost

boundaries rI and r,+,, then the natural boundary condition on this pressure

gradient stress is to neglect the temperature difference term and simply

extrapolate the logarithmic density gradient from boundary 2 and boundary J.

The boundary pressure gradient stresses are then estimated by

Next one must estimate the magnetostrictive stresses using cJ.

(111.6) provides the formulation

rJB " C MW n, (III.8a)

with the boundary conditions

z c8e6J (III.8b)

* J " cBe'J) (llISC)rJ+I!JB "c il ni~
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The ambipolar stresses are somewhat more delicate in that their .
sources are drawn from both zone boundaries and zone centers. The strict

application of the radial Ohm's law results in an integral equation for

the relative charge separation at any spatial location. To a good approxi-

mation however one may neglect the recursive nature of that relation and

simply evaluate the radial component of E at the cell boundaries in a quasi-i

static sense at any time level. In terms of the axial electron drift speed

and the (dimensionless) Braginskii transport coefficients , this

electric field is

9u

E ~ me~ ~ e- e + if'ar e'- T ,
e L

j r e T - e e ( n
m

T, a rnnl TaI]} (111.9)

and can be defined on the cell boundaries easily, differencing for the
m

gradients inn , n a T T to the boundaries directly and averaging thegraietsn e , nI an e - m I ,

strictly central terms to the intermediate boundary. The boundary con-

ditions on E are similar to those on the magnetostrictive stresses with thejr
addition that, in compatibility with the thermal conduction algorithm

discussed below, the temperature gradient source terms are assumed to

vanish.

The ambipolar space charge is hence P= 4 7 • Er with Er given

on the cell boundaries. But p is most naturally computed at the cell

centers by means of

1r~~ Ej ~ r rEr
"I 1 r~~J+ 1 Ej+l, r - j E- ir (I~O

c j " T a j+1 a a
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Forming the effective fluid '..uarge-o-mass ratio at the cell centers,

the final ainbipolar stress is given by

J1A Ej Ir c n,__

with boundary conditions

rj E (III.lc)
A c I ,J

With these expressions, the final output of MESHTRESS is the

sum

but, at the major time levels when the jerk is needed the subroutine goes

further and computes

7 j IJ Ifluid + 19 JJB + *FjIA
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by means of higher-order difference formulae similarly derived, and data

produced by the fluid temperature time derivative calculations discussed

in the next section.

F. Fluid Temperature Time Derivatives

In order to compute the heating rates at the cell centers from the

0 FLUID-STATE, several distinct steps must be taken. These distinct calcula-

tions are, however, collected in the single subroutine TDOT. First one must

recover the electron temperature, mean ionization state and chemical

potential. This is done by the subroutine CREOS (Collisional Radiative

Equation Of State) to which is input the ion density C(nl.) and the

electron "grand canonical temperature" (*G ) Using the smooth inter-
c e,j

polants discussed in Section (II.D.ii), CREOS first obtains the logarithm

of the branching ratio and calculates using (II.9a)

Zfl(*Te,j )  (ce,j)  c (111.12)

from which cT is obtained through exponentiation. Both and

are then obtained using (II.gb,c) with the logarithmic argument

implied by the relation (111.12). In addition, CREOS calculates the

derivatives of the branching ratio with respect to ee and nI so that one

may calculate material derivatives of 0e and Te using

e b

t e T tt (111.13)e a nI nI

The material derivatives of Te are needed for the evaluation of the jerk

as well as for diagnostic purposes. If the jerk evaluation is being done, -
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2 2then CREOS continues with a calculation of a2 Zn b/l(Zn 8 e) and

a2 tZ b/3(t n as well.

The next operation is the establishment of the transport coeffic-

ients on the mesh using the data base { B8 .*T ,1
Cc j' ' c I,j' cTI,j' cTe,j' -.

I supplied in part by CREOS. This procedure is complicated by the need

to iterate on *B (through *J ) because the conductivity *Z. depends onc ej c i J
the magnetic field. The details of this iterative refinement are discussed

in Section III.G(ii) in the appropriate context of the subcycle algorithm.

In essence, any call to BRAGINSKII, given the data base defined above, will

produce the needed transport coefficients to go further.

The establishment of the transport coefficients and temperatures

is necessary to calculate the thermal diffusion rates. This calculation is

presently done in conjunction with the compression heating (*Q()

'j cj) by the subroutines VTGRADS and VTDIFDER. The module VTGRAOS

(Velocity and Thermal GRADient Sources) produces arrays containing the area

meshes e"a1, c*j I and the discrete velocity, temperature and conductivity{ Tcj, c c
data c Xej, cIj, * TIj, * in a suitable form for use with either

the smooth interpolation package or the area-weighted differencing module

VTDIFDER (Velocity and Thermal DIFferenced DERivatives). The boundary

conditions enforced by VTDIFDER are those of null heat flow across the outer

boundaries *rI and *rj+• This is done by means of ghost points playing the

role of cell centers ro, *rJ+l (cf. Fig. 4) and the use of simple variable-

mesh three-point differencing formulae. This yields the output array
iDTF:(( 2 Te~ *( T )P ,0 , ,( I *aT 2 TI)jo.

c a e' c a ei c a e c(aj c c -
*(a a) These results are used in calculating the thermal diffusion rates
c a

((4 T + 4a(a X a T + x a2 T )). (III.14a) -"
S j * a e a a e +  a e

43



*(4 a T1 + 4a (a I aT 1 2 T)) (Ii.lb)

j-S.a I a1.+dX)

The compression rate (V V ) is of course the last item listed above in

TDOTGF.

With the gradients available, one may now evaluate the thermoelectric

fields and calculate a local drift speed for the conduction current J
z

using the free electron density, the complete E field E = Ez + Eh and

the classical conductivity a . At each cell center this drift speed is
-4

compared to the local sound speed; if greater, it is lowered to the marginal

stability limit uz C. With E fixed, the drift-speed limit thus imposes

a decrease in the effective conductivity of any cell. This new conductivity

is set such that Ez • aturb - enecs, and it replaces the classical conduct-

ivity orginally computed. The ohmic heating is also radically altered when
4,.°

the drift speed limit is imposed. It is calculated here by means of the

product J. E;, which is explicitly indpendent of the conductivity but

zzreflects it in any limitations on Jz" The usual heating rates are thus..

completely specified by the calculations summarized thus far; only the

radiative coupling remains.

The radiative energy transport calculation must be done for each

radiative category one wishes to treat. At present a vector of emission

rates is calculated by the function CREMIT for each of four classifica-

tions: line radiation hv < 1 keV, line radiation hv >1 keV, free-bound

continuum, free-free continuum. This function contains preprocessed fits to

the CRE model emission strengths in lines and free-bound continuum, and a

simple free-free emission model. A companion function DAMPIT calculates a

vector of damping rates u*d using attenuation estimates appropriate to each

radiation category. Once the data base {*e., *d., *r., *a = *a .*Q.
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is computed for a photon in category p, one may calculate a coupling matrix

for this category. The coupling matrix is related to the directional deriva-

tive of the probability of escape P (p,.d jz .),where ij is the path
E Cjip 13 1

length from cell i to cell j along a chord inclined to the radius vector

14
througAb cell I (Apruzese 4) PE is a nonlinear function of the path-E
integrated optical depth, depending upon the radiation category's damping

mechanism as well as the local attenuation parameter values. The line

radiation categories use PE functions based on a Doppler line profile, while

the continuum radiation categories use a PE which is exponential with optical

depth. The I represent geometric projection factors needed in the (dis-
ii

crete) path integral estimate and can be calculated for all radiation cate-

gories once the mesh *rj is given. The coupling matrix can therefore be

defined as

Xi xl
X Xi  -'::

where x is a path distance and x = , -x is the cell thickness, along -1 .1 .

the inclined chord. In terms of the coupling matrix, the energy lost or

gained by a cell is the inner product --- a

h j "e P " CiJp epi)
p ii

while the energy lost from the plasma, the observable output from any cell

in any radiation category, is the residual sum

outip *e • p - p
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These operations are done with the aid of th.ree subroutines,

15SPFACX, SPHERX, and PINT due to R. W. Clark The first computes the

projection factors zij from the given mesh *r. for any particular angle of3
a-...

inclination of the chord through each cell. The second and third act in
concert to produce the coupling matrix from the data *d. and Z The

c jp 3ij " Th

subroutine PINT produces required path integrals of escape probability in

either Doppler or exponential mode, while SPHERX produces the coupling matrix.
"-9...

The subroutine TDOT contains all of these calculations but provides

options for bypassing those not needed for the iterative refinement of the

magnetic field. These mode switches are contained in the common block

TRANSPORT-CHOICE (along with the CONTROL matrix for subroutine BRAGINSKII)

as the logical variables: PHOTONS, JSET-ONLY, EOSMODE, and DBLE-DOT-MIODE. lot

Of this set, DBLE-DOT-MODE is referenced by CREOS as well. The flow of

the subroutine TDOT is illustrated in Fig. 5, and is essentially the same

sequence of operations discussed above if no bypasses are taken. The

required input is ( eej *Tj *;,* *n I *r. *r * *8.1.4, cj . c 3cj J c c j

The output is divided among the common blocks TDOTOUT, containing:
{ I,j, ctlJ , *,j, *8ej , and *Oradjp} and GRADS-FIELDS, containing

temperature gradients, compression rates, thermoelectric fields, total plasma

electric fields, classical or limited axial current densities, and (if

DBLE-DOT-MODE is .TRUE.) information required by MESHTRESS and HERTZDOTS

for higher order time derivatives.
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FIGURE 5 Flow of Subroutine TflOT
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G. The Subcvcle Calculating Thermal and Electrodiffusive Evolution

in the Model Plasma

A subcycle is preferred for thermal conduction (and other dissi-

pativeprocesses) because the parabolic p.d.e.describing the evolution is

often treated best by an implicit method, while the momentum advance can

often be adequately treated by an explicit method. Also, from a physical

viewpoint, the fastest timescales of the model plasma are those associated
-. 4,

with electron/ion thermal exchange, (unmagnetized) electron thermal conduction

and radiative losses (under conditions of strong compression). The solution

of the thermal evolution relations (111.4. a, b) for a fixed level of

accuracy will therefore require more time derivative evaluations than an

equivalent solution of the velocity field relation (111.3), even allowing

forsome iterative refinement of the mesh motion. Finally, as a matter of

flexibility in algorithm choice, the subcycle allows one to separate the

thermal evolution from the mesh evolution within the code and, therefore, to

select possibly distinct time-advance mechanisms appropriate to each.

The thermal subcycle presently implemented derives from the observa-

tion that a spacetime, p.d.e. which has the derivative operations represented

by discrete differences on one domain of dependence appears as a coupled

set of o.d.e. on the orthogonal domain. The particular case here is that of

spatial differential operators, corresponding to finite difference operators

(derived through conventional or smooth interpolants), producing a set of

coupled equations on the time domain. In all such cases the coupling of the

time derivatives is expressed as a Jacobian matrix, implicitly dependent on

the discrete mesh used for the derivative operators. Here the time deriva-
tives are the material derivatives Te Be' E z}andthe underlying mesh motion

(r, i, , "'} Is completely transparent to the subcycling algorithm. The

three fundamental codes for this process are described below.
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(I) GEARBOX, the subcycle integrator

Based on a multi-time-level variable order scheme, the subroutine

GEARBOX performs the thermal subcycle on a time domain [Tlo, Thi] defined

externally. The input consists of = Tj cTI,j' ceej cTI,j+'-

a e,J+..}, initial data for a total of 2.J coupled equations of motion.

The time-dependent mesh (with which the thermal fluxes, compressional heating

and radiative cooling are computed) is specified implicitly over this interval

for Tlo < T* < Thi. The forward integration of [Y.}is done by the IMSL.17

subroutine DGEAR, using the material derivative subroutine FLUIDOTS and the

coupling matrix (Jacobian) produced by JACOB. In the environment seen by

DGEAR,the problem is specified completely by the input { the interior

material derivatives [*I?}, the coupling matrix *(a!./ay.), and the inter-

mediate time points T*. Values of T* are chosen by the integrator, in

accordance with the rates of change produced by FLUIDOTS, and these values

are thus the sole input arguments available for the specification of the

Lagrangian mesh *r.,

To summarize the operation, GEARBOX begins by checking for an upper

limit in the explicit timestep supplied as input whenever the integrator is

being initialized. Next the explicit time limits set as arguments are

stored in the common block <TIMEBASE> for use by FLUIDOTS and JACOB in

implicitly advancing the fluid mesh. If desired, a short report on the model I
thermodynamic variables is written. The actual integration is effected by

a call to DGEAR, and upon completion various error flags are checked and the

severity of any integrator errors is assessed. If desired another short

report on the evaluation Is produced; and, if a terminal integrator error

Is found a completed dump of all pertinent information is triggered. The

subroutine returns with a new (provisional) vector Y overwriting
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the original input. The advanced temperatures are either accepted or
iterated upon in the calling routine, depending on the chosen option for the

fl ui d mesh evol uti on.

, The integrator DGEAR offers several control parameters and con-

siderable flexibility in the integration scheme. The most important options

are the use of explicit Jacobians or estimated Jacobians, and the control

of the local truncation error through a variable TOL. The explicit Jacobian

is apparently the most favorable option in this hydrodynamic application, but

if the application of more detailed physics demands a very expensive evalua-

tion for this matrix, an estimate based only on finite differences is adequate.

The variable TOL provides a natural and consistent means of specifying time

integration parameters for the mesh evolution as well, cf. Sections (III.H.i & ii).-''

The integration scheme can be selected as either an implicit Adams method of

up to twelfth order or a backward differentiation method of up to fifth order

(Gear's stiff method). Both methods are of the implicit linear multilevel

type and require the solution of an algebraic system at each interior (sub-

cycle) timestep. The basis for an optimal choice between the two lies in

the performance of several benchmark calculations discussed in Section III. I

below.

(ii) FLUIDOTS, the material derivatives

The physical content of the problem is defined entirely in the

subroutine FLUIDOTS, which incorporates an explicit time advance of the

data {*Zk, *aTZk, *rj} in order to define the mesh and electromagnetic fields

required to compute . In summary, FLUIDOTS receives as input {*Y } and

T*, which is any interior point selected by DGEAR on the <TIMEBASE> for the

calculation of a derivative. First FLUIDOTS maps *Y. to separate variables

*T *eeJ. Next the mesh is obtained by a forward Taylor series using
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whatever information resides in the common block MESHADVDATA:

1 2i. 1 3i..
* r. + ( - Tlo) t + (T* - Tlo) F + -* Tl) r

. o3 3 . 1 2 .

4 iT4 Tlo) 1 4. + 7&r* - lo) 2  r7

This mesh is checked for inversion (*r. > *r+} and if such inversion
Jj

occurs a terminal error condition is generated and a dump of all pertinent

information is obtained. The mesh is also checked for closure of the annulus

(*r, <0 ) and, if closure is sensed during a subcycle, the motion of the

innermost cell boundary is corrected, *r 0 & * 01 - 0. Once these opera-

tions are complete an array of cell centers is generated by equal areal

partition and a central velocity 4. is assigned by area weighting. A cell

ion density is also calculated from the (conserved) particles-resident in

the cell.

The switches EOSMODE and JSET-ONLY are then set for a complete

TOOT calculation. If electromagnetic effects are turned off this single

TOOT calculation proceeds. If, as is usually the case, the E and Be are

needed then JSET-ONLY is set .TRUE. and ZPUSH advances the Hertz potential

from its last data base {z k , iZk} to its values at T*. Given the results

of ZPUSH, the subroutines EFIELD and BFIELD are called to establish E

completely and 86 partially, using the current densities of the previous

T* point. Using the provisional *B8 J' a call to TOOT with EOSMO"E and

JSET-ONLY set .TRUE. recalculates the central current densities at fixed

Ez and estimated Z. A second call to BFIELD uses the new current densities

and thus implicitly refines Z(B). After one refinement pass (TOOT;

BFIELD), EOSMODE is set .FALSE. and the initial calculation of *qj,
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, and *Tej remains in place. The gradient calculation remains undisturbedc c
as well so that the Ez thermoelectric field component will change only

through the refinement of its 8e-dependent coefficient. The refinement

passes continue until (*8} convergence is achieved to a specified tolerance
*.1ej

or until a maximum- number of passes has been made. Then JSET-ONLY is set

.FALSE. and a final call to TOOT calculates the full complement of material

derivatives and transport coefficients using the self-consistent magnetic

field values. In this final pass the gradients are recomputed because the

thermal conduction has changed with the magnetic field refinement. If

magnetic field convergence is not achievet to the desired accuracy, e.g.

o(0"4 ), the vector of fractional changes at the last iteration is output as

a diagnostic, and if desired a full report of the calculation is output

as well.

The last operations performed by FLUIOOTS are to map 'c ej' ~

to the single variable *t and to update the acceleration and jerk arrays

If ,-1j if required. An update of these variables, contained in<MESHAOVOATA>,

is triggered within the subcycle whenever T* is larger than any previous

time argument requested T*t>last' or if T* - Thi. As discussed in the following

Section III.H, this enables one either to correct the mesh evolution

smoothly as temperatures evolve or to set up for a complete Iterative

refinement of the mesh evolution. The mesh update occurs with a call to

MESHTRESS and, if OBLE-DOT-MODE is .FALSE. as is the case during a sub-

cycle, it involves only the explicit recalculation of the acceleration

array *PJ. The jerk array is continually updated as

Wj T*--Tlo , ast

for '* > !last" When FLUIDOTS is called outside a subcycle, DBLE-DOT-MODE
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is set .TRUE. and an explicit evaluation of the jerk array rj is obtained
as well.

(iii) JACOB, the link to the original p.d.e.

The coupling matrix calculated by JACOB is a simple if lengthy

exercise in the use of partial derivative chain rules. In the case of a

simple three point difference formulae this matrix is slightly sparse and

pentadiagonal. The compression and exchange heating create a block-tridiagonal

band dependent on (9 * V) and the local Te, while the thermal conduction

operators add two more bands and some diagonal contributions. In the case

of a smooth Interpolant (G or E-spline) the matrix contains more nontrivial

bands of monotonically decreasing importance away from the diagonal. The

rate of decay is determined by the coupling parameter choice in the under-

lying interpolant.

However one defines the differentiation process, the general form

of the Jacobian is easily derived from the structure of the subcycled array

{Yj}. For all entries involving the material derivative of ee the local

value of the branching ratio is the element of central interest, i.e.

while only on the first subdiagonal does e couple to Ti, since

Ii I',j

apart from some radiative contributions due to the cell's self-opacity.
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9t

In a similar manner the entries involving the material derivative of TI

couple to e only on the first super-diagonal, i.e.

ae .b ei " mI te~j  :

The coupling on the main diagonal consists of several contributions. The

primary one is compressional heating V- ..V), with exchange losses and the

term from the central coefficient of whatever gradient formula is employed

in computing the heat flux also important. In the case of 4 a radiative

diagonal contribution also arises.

The general Jacobian structure obtained for a three-point

difference scheme is illustrated in Fig. 6. There compressional heating is

denoted by 9 on the diagonal; the ion-electron exchange terms are shown by

x; and the contributions from the spatial differencing in thermal con-

duction are denoted by A.

Figure 6 - A simple Jacobian matrix

TIj eej TIj+j eej+1 TIj+ 2  eej+ 2

J-1 i(tl) Aex x a

J (4 ) X ASX A
21 ej _

2j+1 A AQX

Y2(j+1 ) (eej+i) A X ASX A

j+3(fIJ+2) A &8X X

t 2(j+2) (6 ej+2 )  I AX
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The inclusion of radiation terms is dependent on the coupling

matrix summations discussed above in computing Q photo It is a straight-

forward but more complex calculation along these same lines.

(iv) Modifications for E diffusion

z

If the option of diffusive evolution for Ez is desired, an

alternate trio of subroutines is employed. The vector Y now becomes

S... c z ' * e I in analogy to the structure used in GEARBOX.

This implies a Jacobian which is block pentadiagonal with further bands

added depending on the spatial differencing. The routine GEARBOX is

replaced by TETGEAR; FLUIDOTS, by TETDOTS; and JACOB, by TETJAC. The

routine TET'OTS contains most of the principal differences; it must call

an additional subroutine EDOT which evaluates equation (111.2). The

iterative refinement of Be appearing in FLUIDOTS persists, but the

external circuit equation requires an iterative refinement of *z and
c zJ

4 together in order to achieve a self-consistent prescription of the

boundary conditions for equation (111.21. Once the values of *fc ej'
;P are established by TOOT and MESHTRESS, however, all iterative refine-

ment can be made internal to EDOT. The flow of TETDOTS is thus quite similar

to that of FLUIDOTS with an additional call to EDOT prior to the final

return.

H. The Complete Fluid Evolution Package - HYDROPUSH

All of the foregoing algorithms are combined in the subroutine

HYDROPUSH,which forms the nucleus of Program ZDIPR-apart from startup,

diagnostic and graphics modules. HYDROPUSH is concerned exclusively with the
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advance of the <FLUID-STATE> over the variable major time step which it

selects as appropriate. The only required inputs are the common blocks

<FLUID-STATE> and <FIELDADVDATA> (containing the previous time slice of

fluid variables and field variables) and the appropriate mesh dimension,

scale factors and physical constants,obtained from a variety of sources.

The output is an update of <FLUIDSTATE>, and an increment of the variable

MSI (Main Step Index) by 1. If a restart file is desired, it is created

for later use and assigned a record number equal to the MSI. If any severe

errors occur in the advance, dump files are created to allow examination

of intermediate results, and a variety of reports at intermediate phases

of the calculation are available as general diagnostics. The architecture

of HYDROPUSH assumes that, after the fluid advance is successful, the

main program will call ZPUSH separately to advance the fields 1Zk and

a zk - unless the electrodiffusive approximation is being used. In that

case HYDROPUSH will also advance the E field by means of TETGEAR.

The sequence of processing begins by reading elements of the

<FLUID-STATE> into <MESHADVDATA> and the subcycle vector {Y.}. Once

the appropriate data base is inferred a full complement of material deriva-

tives is computed by FLUIDOTS/HERTZDOTS or TETDOTS. These material derive-

tlves,including the field T(a Jz) or c zj, are then used by STEPPER to

select a major time step. The environment of either GEARBOX or TETGEAR

is held if one wishes to iterate the mesh evolution (GRIDITER=.TRUE.).

i+J i+J i+1'
Otherwise a single subcycle is done (advancing i+r ir and j)
and the new FLUID-STATE is output.

The iterative refinement of the mesh evolution is accomplished by

first making a predictor step with the jerk continuously updated over the
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subcycle. At the end of the first pass the GEARBOX or TETGEAR environ-

ment is reset to its content at the beginning of the subcycle. Then the

full compliment of material derivatives is explicitly extracted from the

(provisional) advanced fluid data, and the jerk coefficient is overwritten

by a linear combination of its values at the beginning and end of the step.

Further passes over the subcycle use progressively better estimates of the

jerk until convergence in the linear combination coefficients is achieved
or the maximum allowed number of corrective passes is reached. A final

pass with the fully self consistent MESHADVDATA is then executed to obtain

the most accurate thermal evolution. The resulting, time-advanced GEARBOX/

TETGEAR environment is left in place and the new <FLUID-STATE> is output.

The general structure of HYDROPUSH is illustrated in Fig. 7; the

details of the time step algorithms and the iterative refinement scheme

are discussed in the subsections below.

(i) Time step considerations

Over a subcycle the steps are controlled by DGEAR, but the assign-

ment of the proper <TIMEBASE> must be based on those rates not accessible
to the subcycle integrator, viz. * r. i (an z) or c . The

J. j c T Z c z_

comparison among these rates, and those time steps derivable from them, is

accomplished by the subroutine STEPPER.

The velocities, accelerations, and jerks of the mesh can be used

to formulate several distinct time step estimates. First is the magneto-

sonic Courant-Fredrich-Lewy (.CFL) condition, which seeks to insure that the

spatial domain of influence on future values is contained in the domain

of dependence established by the finite differencing algorithms which pro-

vide the acceleration. The domain of influence is specified by the most
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rapid signal velocity physically significant in the fluid, which for the

present application is the magnetosound speed

Vm 2 T + 1/ -cm

The domain of dependence for the pressure gradient stresses is at least two

complete cells, so the distance of propagation is one cell width. Since the

cell is generally either compressing or expanding, the disturbance propaga-

tion is superposed on the relative boundary motion, and

ATJi "6l(1rj+ - rj)/( c vmj . ij+ + 4j)

with a in the range g for explicit mesh integration and perhaps as

large as * for implicit evolution.

A second criterion is the Local Truncation Condition (LTC) based

upon the highest time derivative of the forward Taylor series used in

advancing the mesh P Since area weighed differencing is the basis of the
gradient calculations the highest time derivative's contribution to the

relative cell area change should be (approximately) the truncation error

&GEAR of the integrator (the GEARBOX variable TOL) multiplied by the

typical number of subcycles expected, i.e.

i LTc "(aj+" -aj)/ I j(l d '--

with 62 (5-10) • GEAR.

A third related criterion is the relative cell area change itself,

calculated through second order in the Taylor series - the Quadratic Cell
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Area change (QCA). With Aaj = -a. and similar notation for the

material derivatives, an expanding cell will grow by a fraction & in

I~ ~ = 6 aQ. 64
QCA AMa-.

where 6 may be set in the range 0.08 - 0.20. A similar expression exists

for the fractional shrinkage of a contracting cell, and the {iATj A }is
SQCA

just the collection of such estimates. A cell destined to change from

contraction to expansion (or vice versa) over the time step is excluded

from the selection algorithm.

A fourth mesh-based criterion is the time for collapse on axis.

If the innermost zones (rI and r2) are projected ahead using the Taylor -

series coefficients, then one seeks a time which allows the first to

intercept the axis, but not the second. After the first has collapsed, ,.

only the time for axial interception by thc second is relevant. The

collapse time ATc is then appropriately set in between these two.

Finally a step ATI can be set by insisting that the relative

changes in wave sources or diffusion sources, i.e. a J, E be bounded by a

fraction similar to that limiting cell area changes.

The subroutine STEPPER calculates these various time steps

(ATICFLATILTCATIQcAAIC , Ir I and then assigns a final AT as
CFL' ITC'ATQCA"'IC AT

ia min iiAI , inf iATj I inf iATjJQ A  i ATc  .

j CFL j LTC j QCA c

inf iATjl 1
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This provisional AT is then checked for any danger of mesh inversion by

advancing the mesh to the end of the interval. If a mesh inversion is

implied the step size is cut by a factor of 0.9 and the test is made

again. This procedure continues until either the step cuts prevent the

inversion or the original step has been cut to a tenth of its original

size. In the later event the calculation proceeds with a warning of possible

inversion. STEPPER then outputs the new end point (Thi) for the subcycle

integrator and an estimate (delTmin) to be used as an explicit step if the

time stack internal to the DGEAR integrator is to be reinitialized.

(ii) Explicit and implicit mesh advance with HYDROPUSH

The simplest mesh evolution available is an explicit advance using

the Taylor series coefficients at a single time slice,

* ~~ *1 aZ.T3.* , *Ai~j +*AT 2 I. + *

rj ij + r+-r- j 6 J

A2

The local truncation condition in STEPPER insures that this Taylor series

receives a small contribution from the highest order (.and potentially

most noisy) term F In order to minimize the global accretion of what-

ever error might be added in any one such time step, however, it is

necessary to insist on an evolutionary self-consistency in the advance of

the acceleration fields and the jerk fields. A consistency determined at the

future <FLUID-STATE> by the position, velocity and temperature fields and

external stresses.
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One way to help provide self-consistency is to alter f during

the subcycle by examining the acceleration values obtained (*fj) and

revising by the rule,

i._ * - j
r*AT

continuously as the subcycle progresses, the superscript &-denotes a

forward time ordering. This is tantamount to choosing a (variable interval)

time averaged T for the mesh advance, and clearly has a cumulative but

distinct impact over the subcycle on the position and velocity fields.

For the grid *r. this version implies a local effective acceleration

*r+ r.~ *i~j -

Ji 3 3 j

while for the velocity, the local effective acceleration is

These effective accelerations appear to be available only for future

subcycle times - *14 is the acceleration derived from the fluid upon

arrival at T* by means of the Taylor series coefficients previously

computed. The GEARBOX integrator is not always committed to a monotone

increasing march in T* however, so that any mesh required when it "backs

up" should reflect the forwardmost Taylor series information available.

For this reason the material derivative codes FLUIDOTS and TETOOTS keep

track of the times T* input to them and perform the revision of". (and

hence the calculation of the effective accelerations) if and only if
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the given T* is the largest time argument seen thus far in the subcycle.

This approach therefore continuously updates the Taylor series on

an ever broader temporal data base in order to follow the general trend of

"F instead of just a single value. The explicit (orpredictor) phase of

HYDROPUSH is just the implementation of this algorithm.

On the other hand, nothing guarantees that the smooth changing of

7 is sufficient to provide true self-consistency in the motion. At the end

of a subcycle there exist two versions of i+1iF.The first is available

from a time slice of advanced fluid variables 1+1 j , i+1TjF( ;j c Ij'
i+1 i+lJza e ), the second is that derived over the time step using the jerk

coefficient i+. 1 . +rj J ..

The mean value theorem guarantees however that at least one value
i+liof? (on Tlo < T* < Thi) exists which makes the second version of

,JJ

exact to all orders. The essential thrust of the implicit method described

here is to find that best value A'F for each cell which provides a solution
3

to the nonlinear difference equation

i+JF+1 rJ Ti+T  i+' .+
1 E i+lB  i+lE = .-

fjF' rJ j' c T ' c ej c zj' c ej' c rj)

'. AT A. F"

jF • j

to some specified precision, e.g. the TOL in GEARBOX. Here the accelera- I
tion at the new time level depends on the entire time history of the fluid

variables computed over the subcycle. The most general method of solution

is to iterate across the subcycles. This is accomplished by representing

the unknown best value F as a weighted sum of the (explicitly calculable)

end point values, viz.
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and iteratively computing 6 by several passes across the subcycle until

convergence (in a is achieved. At any iteration (p) the new 6 is

computed from the implied new fluid state (using the last 6 vector) and the

original fluid state by the required solution of the difference equation,i.e.

p 1 1 F .-.rjF

IAT J

i+LF,
p-i JF IJF

The jerk coefficient (embedded in MESHADVDATA) is then updated to be the

current estimate of A7 given above and the entire subcycle is recalculated,

completing the loop. Convergence to a particular vector 6. is thus equiva-

lent to a solution of the difference equation and, in the limit of small time

steps, any solution of the difference equation closely approximates a

solution of the original partial differential equations. In the implicit

scheme of course the revision of F. during the subcycle is suppressed.

The present implementation of this scheme in HYDROPUSH relies

on the simple replacement algorithm discussed above in order to find 6..

It is probable that convergence can be improved by using more sophisti-

cated estimates based on the iterative sequence [p6 } pU0,l,2,3.., but the

best such choice will come from examining the algorithm's performance

and thus cannot be selected a priori with any certainty. It is also

probable that the inclusion of previous time levels (i-i, i-2...) in an

estimate of AF would be a means of filtering the noise that might develop

in this variable, and general methods of effecting this extension are

under study.
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I. The Planned Sequential Benchmark of This Method

a) Checks on internal energy conservation

On a stationary mesh (no compressional heating or expansion

cooling) with radiative losses disabled, an initial separation of TI and

T e (e will relax inhomogeneously when the (time invariant) ion density

varies In space. As a test of the subcycling algorithm,the time asymptotic

final state (TI - Te (e8 ) To for all values of r) must contain the

same internal energy as the original. Preliminary tests with uniform ion

density (and uniform relaxation) have demonstrated this energy conserva-

tion to 0(103

b) Checks on the conservation of kinetic and internal energy

There exists -a class of self-similar Gaussian implosions and

explosions for which the time-dependent density scale length (or any other

Lagrangian marker radius) varies as

'2
rEt1 - (1 + YE)T

yE + 1

with YE initial thermal energy/initial flow kinetic energy. These flows

remain isothermal in space at all times (removing the effects oil thermal

conduction) and heat/cool e e and TI equally (removing the ion/electron

thermal exchange. It is thus a necessary check to insist that the algorithm

preserve this flow locally on the mesh and also conserve the sum of flow

and internal energy globally in time.

Once these benchmarks are obtained the numerical performance of the

code can be properly optimized with respect to mesh density, time step, and

convergence criteria.
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c) Checks on the conservation of kinetic, internal and magnetic

field energy

For a strict MHD model plasma with a fixed (constant) current, the

self similar solutions due to Felber provide oscillatory trajectory

families for Gaussian implosions. One makes contact with these in the

present model by legislating a particular current profile, and by neglecting

ohmic heating, ambipolar Er stresses, ionization dynamics and radiation.

The resulting motion can then be compared to the analytical results over

several oscillations, and the energy interchange among these three reservoirs

monitored with regard to its global conservation in time.

d) Examining the process of collection

A final basic study involves the filling of the central cavity by

an initially annular load. In cylindrical geometry this process is quite

similar to the diaphragm problem studied by A. Lapidus and a detailed

comparison of numerical results will be useful in assessing the shock and

rarefaction resolution capabilities of HYDROPUSH. In the limit of large

radii the annular diaphragm evolution is very close to the corresponding

planar problem for which analytic flow solutions are known.
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APPENDIX 1: VAX INTERACTIYE INTERPOLATION PACKAGE

As an illustration of the comoands REPRESENT and EVALUATE? the
tollowing calculation Prod~jced the 0-op1ine coefficients of the branch-
ins ratio in Aluminump cf. Chapter 11.

The ?ts o? input data reside* an -CCHEHNODE}. I.E.

FILES CHEMMaDE

irectorw -bRAI :CIPRi .HYDR0.CHEN3

t~l.DIl7/il 12-AUS-1991 13:42 (REPRUE,,)
C391.DAT1I 7/11 7-AUS-1Y9I 09:30 (RERWIP,)
CR9iYvDATII 7/il 19-AUO-1991 13112 (RERWEP#)
CRE99R*DAT~l 6/i1 20-AUS-19S1 16241 (RERWEPg)
CREi9LTE3*DATII 7/li 26-MAR-1992 16t46 (REPRWE,,)
CR919LZTR*DATIl 7/li 20-AUG-1991 16t37 (REgRUEsi)
C*919Z&.D*Tfl 7/l1 20-AUS-1991 14117 (REPRUEo,)
CRE21*0*Tl1 7/il 7-AUS-19ll 09:32 (REPRUE,,)
CRECLANOD4711 4/il 23-MAR-1992 20:48 (REPRWEP#)
CRCKLANODAT~I 3/1i IY-MAR-1992 10132 (REPRWEPP)
CRELLAM98AT1I 4/li 23-MAR-1932 13:39 (REPRWE,,)
CRERLAMDAT1l 4/li 26-MAR-1992 13226 (REPRWE,,)
ENITAL.CODATOl 3/li 23-11AR-1962 20246 tRE9RVE,,)
ENITALX*DATII 3/1i 1Y-MAR- 1902 10t2 (RERUEtin)
9MITALL*DAT11 3/li 23-MAR-1992 13229 (REPRUE,,)
EMITFILE*EXEI1 19/22 17-MAR-1992 1411 (REPRUEPP)
t0OVILEE1X11I 3/il 19-AUO-1181 11:19 (REAUE,,)

EOPIEP.XE110/11 19-AUG-1981 11:20 (RERWE,,)
MCKSEC?.0DAT 1 3/11 17-MAR-1932 14:20 (REPRWE,,)

Tetal a? 19 files#. 121/220 block%.

nd Is nosed CREIVLZTB.DATOI. The comand REPRESENT IS

SH S DL REPRESENT
REPRESVST m 9C0MMDSREPIT.COM

TIME COMMANDS :RIPIT .COM

<<<< REPRESENT FILENAME >>
P1

AUS100 'PI'.DAT INPILE
INSUIRE P2 OUHAT PANE DO YOU WISH FOR THE OUTPUT FILE? ENTER ITYPLEASE,'
AISG 'P2' .DAT OUTFtLE
ASSISH 'P2'HeDAT HEADER
ASSISN/UIER..NODE UYBSCOMNANDt SYSS INPUT!
RUN UTILITYSREPIT.EXE
1<< PROMPTS WILL 3E GENERATED FOR FURTHER INFORMATION.

DEASS10N INFILE
DEASSIUN OUTFILE 1-4
DfAISISN HEADER -
FILES %sDAT

and its use is indicated bv the above comeand ?ite.
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REPRESENT CHENNODE:CRE19LZTD
WHAT NAME DO YOU WISH FOR THE OUTPUT FILE? ENTER ITPPLEASE.: LAMZTDI?

WHAT IS YOUR SPLINE CHOICE?
ENTER "OSPLINE. , *ESPLINES.*OR 6EZ2SPLIHES."

-*! DO YOU WISH INL ACCURACY CHECKS?" 'Y231

ENTER THE DIGITS OF PRECISION FOR YOUR INPUT FILE.
S

DO YOU WISH INL ITERATIVE REFINEMENT?
'NO'•

ARE THERE BOUNDARY DERIVATIVES IN THE INPUT FILE?
,NO*

ENTER THE NUMBER OF X-VALUES ZN YOUR INPUTFILE.
31

ENTER THE NUMBER OF FUNCTIONS ( F(X)) TO BE FIT.
3

THE ASSUMED FORMAT OF YOUR INPUT FILE IS: (IXPlP4925.13)
ARRANGED AS X(I) FI(X(I)) F2(X(I))...IN EACH RECORD,
UTH ONE RECORD FOR EACH X-VALUE AND D.C.
DO YOU WISH TO CHOOSE THE WIDTH PARAMETER?
'YES'

ENTER A VARIADLE MESH SCALE FACTOR (0.2DOP 5.000)
0,4425D0
THE CHOSEN AND DEFAULTED CONTROL PARAMETERS ARE:

SABE POINTSP+D*C * EPS-CONY r IDOT , ITMAX
31 31 Io00000000000000OE-02 5 0

D.C. DESCRIPTORS
0 0 0 0

BEGIN SMOOTH INTERPOLATION WITH BSPLINES:
MILD IMIL ERRORSP DO YOU WANT THE DETAILS? ('YES' or 'NO ")

PROCEEDING TO INTERPOLATION ANYWAY WITH IDSTm 5 AND IERU 34
THE FORMAT OF YOUR OUTPUT FILE IS: (IX,1PD025.15)
ARRANGED AS X(I) , 0(1) # LI(M) , L2(I)... IN EACH RECORD
WITH A HEADER FILEt Dl TITLE 3DM DI,..ADDED
FILES CLOSED.

irectorv .DRAI:CIPRI.NETNODE3

LAMZTU1O.3ATI1 5/11 26-APR-1982 14142 (RUEDtRWEDRWEvR)
LAMZTDIOH.DAT1I 1/11 26-APR-19U2 14142 (RWEDPRWEDPRUER)

Total of 2 files. 9/22 blocks.

The two output files contain the base pointsp width Peaeterst and
fit coefficients --

type LAZT19.DATll
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TYPE COMMANDS:CHEKIT.CON

<<<< EVALUATE FILENAME >>>>
PI

ASSIGN 'PI'.DAT INFILE
ASSIGN 'PI'H.DAT HEADER
INGUIRE P2 *UHAT WAKE DO YOU WISH FOR THE OUTPUT FILE? ENTER ITPLEASE."
ASSIGN 'P2'.DAT OUTFILE

ASSION/UERNODE SYSSCONNAND: SYSSINPUT:
RUN UTILITfICHEKIT.EXE
1(<<< PROMPT$ VILL It GENERATED FOR FURTHER INFORMATION. >>>>
DEA9SS1N INFILE
DEASSIGN OUTFILE
DEASSIGN HEADER
FILES IDAT

and its "e is asain Indicated in the command file.

EVALUATE LANZTVIY
WHAT NANE DO YOU WISH FOR THE OUTPUT FILE? ENTER ITPPLEASE.: DRANCH.

THE INTERPOLATION FILE FORMAT APPEARS TO DE
(IX*1P5D23.i$)

THE DEFAULT SPLINE CHOICE IS
GSPLIN[S:

ENTER XNIN#XNAXoNUM3ER OF INTERIOR CHECK POINTS:
-3.3653376144531D0 2.335779957544778DO 49

DO YOU WISH TO CHANGE THE SPLINE CHOICE?
'NO'

ENTER THE INDEX OF THE INTERPOLANT, NUMDERS OF DERIVATIVES (0-4):
122

ACTIVE CONTROL 8 DOMAIN PARAMETERS:
XIN XNAX JORD OUTPUT FORmAT
-3.565333761449581 2.335778957844779 1 (1XIP4EIS.6)

D0 YOU WISH TO CALCULATE OTHER INTERPOLANTS IN THIS FILE?
'NOt..
FILES CLOSED.

Directorw .RA1$CIPR1.NETNODE3

IRANCH9DATII 9/11 26-APR-1962 15:07 (RUEDPRWEDPRWER)
LANZT1ioDATII 9/11 26-APR-1992 15:07 (RWEDPRUEDRWEPR)
LAZTDIH.DATII 1/11 26-APR-i982 15:07 (RWEDRWEDtRWE.R)

Total of 3 files. 17/33 blocks.

Here the output file contains the evaluation trid, the inter-
Polant, and its first two derivatives which can be uised to
check the eualitv of the fit against the original data.

tvpt DRANCH.DATP1
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-30363391+00 1.03963"9+00 1.227905E+00 -3.239513E+00
-3.4473161+00 1.16167;1+00 6.422902E-01 -3.140310E+00
-39329294E+00 1* 2408591+00 5.09973-01 -2. 440775E+00
-362112721+00 1.2158001+00 2,670826E-01 -1.657441E+00
-3.0932491E400 1.3079979+00 1.3029591-01 -5.57V9091-01
-2.9752279+00 £ .3233751+00 1.674333E-01 1.3079361400
-2.8572059+00 1,336933E+00 4,3639511-01 3,021442E+00
-2.7291621+00 1 .4290041+00 7.39634E-01 1 .667650E+00
-2.6211609+00 1.5165629+00 6t4163661-01 -4-*197363E+00
-2,303138C+00 16551030E+00 -1.799344E-01 -S. 467291E+00
-2.331151+00 I .4799001+00 -899092E-01 -1.815282E+00
-2.26709340 1,381906C+04 -6.668793E-01 3.148222E+00
-2.1490711400 1.3106771+00 -6.136972E-01 -3.541794E+00
-2903104@C+00 1.2043711+00 -1,.062440E+00 -1.043433E+00
-1.9130261+00 1.0837571+00 -9o07322&E-01 2.67937E+00
-1.715003C+00 9.9561051-01 -5*93099$E-01 2,338012E+00
-1.6769311+00 9.3776711-01 -4.3709691-01 -1,3650591-01
-1.59591400 9.7746311-01 -6.35196-01 -2.6302171+00
-1.440'936r+00 7.3605931L-01 -8.90647?1-01 -1.031771E+00
-1*322914C400 6#802963E-01 -6.,7427031-01 8.375162E-01
-1.2046?9+00 34.406812-01 -7.526054E-01 1.0657291+00
-1066691+00 39024869E-01 -6.3116191-01 P#9723271-01
-9,603470t-01 4.3472431-01 -5.1924431-01 6.9390681-01
-6.506246C-01 3.7947321-01 -4 * 640921-01 3.2241081-01
-7.3280239-01 3.3567151-01 -3.2527711-01 7,490377E-01
-6.1477991-01 3@0222719-01 -2.4413601-01 6.136411E-01
-4.967575-01 2o7727421-01 -1.6227741-01 4.3413251-01
-3.767352E-01 2#584212E-01 -1.3990931-01 2.974040E-01
-2.4071261-01 2.4331191-01 -Lo0073329-01 2.4137961-01
-1.426"905-02 2.3253691-01 -9.21163E-02 2.0625761-01
-2.466139-02 2&2419749-01 -6.1742031-02 1.3067301-01
9#335422E-02 2. 1736O01-01 -5.2612791-02 1.707617E-02
2.1137661-01 2.1117041-01 -5.771640E-02 -9.6720651-02
3*293ft-01 2.0347911-01 -7.4111161-02 -1#720560E-01
404762139-4t 1.9346541-01 -9.582734E-02 -1.846407E-01
5.6544361-01 1.6095391-01 -1 *1520231-01 -1.3493041-01
6.8344606-01 1,440101-01 -1926393E-01 -5.330437E-02--
6.0146841-01 1.514934E-01 -1,*233493E-01 1.*496907E-02
9.1951071-01 1.3454401-01 -1.241977E-01 3#096940E-02
1.037W31+00 1.2229621-01 -1 *1673561-01 7.449613E-02
I .155551+00 19090629t-01 -1,0675051-01 9#304567E-02
1.27'3761400 9.7132331-01 -9.590212E-02 9.5823331-02
1.39160+00 3.6364551-02 -4%692821E-02 6,892371E-02
1,5096221+00 7.6596661-02 -7.8334351-02 9.157033E-02
1.6276459+00 6*795?731-02 -6.707143E-02 6.826947E-02
1,745"479400 6.0432201-02 -5.973061-02 4.3311641-02
108634901+00 3,36381E-02 -5.6604361-02 2.4695261-02
1.9617129400 497254971-02 -5,020054E-02 9.1636661-02
2.0997341+00 4.207892E-02 -3.,729026E-02 1.003034E-01
2.2177571+00 3.607632C-02 -3,3841461-02 -6.394240E-02
2.3357791+00 3.3193871-02 -5.193019E-02 -2.16110741-01

The original data for this check is the second column of
CRE19LZTB logo the natural logarithm of the branching ratio.
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APPENDIX I. Derivation of the Electrodiffusive Limit

.-.

The general solution of the Hertz vector wave equation is a super-

position of incoming and outgoing cylindrical waves. The linear or nonlinear

response of the medium, specified by the convolution involving 3 J, acts to

cut off these freely propagating components. One may view this process as

the production of reflected power of nearly opposite intensity to that incident,

leaving a residual amount deposited in the load as Joule heating. Because

of this near cancelation of Z field components it is possible to neglect

the second order time derivative in the Z wave equation in a first approxima-

tion. In particular the requirement of a strict detailed balance in the free

wave component EE(xr) demands that -2Ew 0, because one is interested inz zwave limot r whichd tha w z w

the limit for which zE<<3,J is true to arbitrary precision. Physically thea2Ew .
azw

common situation is one of nearly balanced waves in which -up - <<s1,
w (XI

but the free wave components are solutions of 2 E s 0. The constraint

that 72E w *0 is simply a way to select the limit e 0. Since any solution

of Laplaces equation valid inside some radius, and vanishing on that radius,

must vanish everywhere within, then in the limit of truly detailed balance

inside a radius xo and on that radius, X a xCXa xEw) = o is a necessary condi-

tion. But using Faraday's law one has x13(a...B )=O as well. In terms of the

Hertz vector Z, 8ew  -a a Z, so that the original condition of detailed

balance in the wave components becomes -x' a C)a ;2Z) = 0 for some region
X XL

x < The equation governing the electodynamics in the limit of strict

detailed balance is thus obtained by operating on the original wave equation

with 72 and removing the contribution arising from a2 Z. The application of

72 on the convolution with a J produces Just the integrand
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rr

4n a 3X (.r) d J) 9n + I" d"Z.nL
XN X ..

41ra J(X,r).

*. j .,
The resulting equation is -

x' a x @ E * 4ira J (A.II.1)
x x -

because -V2Z - E in the original relationship. It is this relationship

which can be transformed into a diffusion equation for E CX,T).
z

Using the usual Ohm's law, one finds

a TJ -E a Z + Z: a (E z + a r 8e + E th)

aJ E a Z Z(3 E + 8 8 8 *PaT T Z r T6+eTrTG
* E aTE ( +r~E 8r3rB e + BeaTy + aTEth)

and applying Faraday's law once again, to eliminate aB8 and form the

,4 (dimensionless) material derivative,

SD J E + ( ZEz + BZ (r + Eth). (A.II.2)

Here r x; E E E +88 Eth the total electric field in
ro

the plasma load; and E a T- is the dimensionless conductivity. Finally,

in this case of a linear response relating J and E, the equation determining

the diffusion of Ez Into the plasma becomes
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Ez x(x E)X- EanE Ea r (A.II.3)

In the nonlinear case, reflecting a marginally stable drift speed

limit, this derivation produces the same result, insofar as J = Z(E) E is

formally admissible as a constitutive relation. However, one is forced

either to neglect, or to model from first principles, the term D InE in the

relationship just given. The reason stems from the implicit definition of
en ec,

(E) aE . If an explicit time derivative is to be calculated for
scale

Z, then it must arise through some model of the turbulent fields providing

the enhanced drag on one's proverbial test particle. This model would

necessarily involve various functionals of E and its time history and would

generally not hold Z to the exact, marginally stable value at all times.

Such a model is beyond the present scope of this work.

It is a better choice to assume that E(E) has no well-defined time

derivative, that It respresents a local, time averaged estimate of the truly

physical transport coefficient. A strict application of the marginal

stability constraint decouples J and E once E becomes sufficiently large.

When this decoupling is imposed on a diffusion equation there is no mechanism

left to evolve J and E, cf. Eqn(A.II.1). The more accurate first principles

model would not force a complete decoupling, but would provide a smooth

transition between linear response and drift speed limitation -- the

appropriate asymptotic conditions. In contrast, for the complete electro-

magnetic description, a drift speed limit is fully admissible -- it simply

specifies a wave source term a J a ea (necs). The use of the full wave

equation is preferable whenever strict adherence to the drift speed limitation

is desired, and the wave components generated in the drift speed limited
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p. ' regions of the load are probably important contributions to the dynamics of

* the transition front between the two asymptotic domains of resistivity. On

the other hand, If the diffusive approximation is adopted, then the drift

speed limitation must be applied with the caveat that its time dependence

a tJnz(E) cannot be specified from the local drift speed constraint alone

and is better neglected than modeled in any ad hoc fasion.

.78
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APPENDIX III. Area Weighted Differences

In the Lagranglan mesh shown in Figure 4 the only fundamental

positions are the radial cell boundary locations *rj, and their associated

velocities . The scalar quantities assigned to the cell centers have

implied spatial locations, *rj, derived from the boundary locations. In order

to avoid formal singularities in various derivative expressions the independent

variable is chosen here as aj 0 *r )2, an areal coordinate. The two

primary types of differential operators to be estimated are Cil derivatives

of first and second order at a boundary based on cell-cenetered or cell

boundary data, and (ii) derivatives at the cell centers based on cell-

centered data.

Turning first to those operators based on or producing cell boundary

data, the radial gradient for any function F. defined on *r. is estimated by
( rF~~~j j*~~ " ci' .

2 j(\ca .a ) , (A.lII . _"

with the second derivative estimate, based on F., given by

F• F

2 2* (F -~ F(3 F) M2* r 2 r F ~ii.r c i \aj I  aI " Zcr1J- a. -

a a (A.III.2)caj c -j 1..-.-

and the averaging operator to the boundary defined as

*caj - a ) F + a, cajjl (A.III.3)

These difference operators are then sufficient to cover all gradients and

averages needed in computing the evolution of the fundamental boundary

variables [Vr(t)]j * *r and its integral, the Lagrangian position.
rj
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The corresponding operators estimating first and second order

gradients at the cell centers can be obtained similarly. Here the use of

ghost points located at cro and crj+1 is the natural means of enforcing the

boundary conditions appropriate to the diffusive processes, such as thermal

condition. The difference operators given below assume that some cell-centered

quantity cF has been assigned ghost point values cF J+ - cF., Fo = cF1 in

order to make the flux estimate, proportional to arF , vanish at the first and

last boundary. First one may define several Cnonuniform) mesh intervals,

j -caj -caj.1

h -a - a

j caj+ - ca CA.III.4)

h-a -a

j caj+1 caJ-1

h h~

and the ghost point locations

h 2(a a

h 2a caj).

The first derivative 3a F is then estimated by

h<hh
c(a ~ ~ cJ+I + hc h < c J,3, j c .AII5

h
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with boundary conditions,

h> F- F\ h___ ____F_

a F) 0 C ZC J c_____F_-1 Jc
cal h > chaF>N h > > >

o I 1  hJ-1 IhJ-1

The second derivatives are similarly obtained using

(8F)f -a-- :I-FCF. +. F
2 ah j < [h c J+ cj h cj-1 (A.III.6)

while the boundary conditions become

2 2) /cF2-c 1 2 -2 QJ-C1 FJ1

All the expressions reduce to well known second order accurate

differencing schemes when the mesh is presumed uniform.
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